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Abstract

This paper examines the performance of Valiant's PRAM algorithm for finding the max-
imum of a set of numbers, assuming that a modified PRAM model is used. The modified
PRAM is like a standard CRCW PRAM, except that multiple read or write requests to a
single memory location are handled sequentially. It is shown that using this model, Valiant's
algorithm requires O(sqrt(N)) time to find the maximum of N numbers using N processors,
and that it does require time proportional to sqrt(N) infinitely often.
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Valiant's Maximum Algorithm with Sequential Memory Accesses

Valiant has created a PRAM algorithm for finding the maximum of N numbers that uses
P = N processors and operates in O(loglog P) time [1]. That algorithm consists of O(loglog
P) stages, each of which takes constant time. At the start of each stage, a certain number of
candidates for the maximum are present. These candidates are divided into roughly equal-
sized groups, and the maximum item from each group is calculated. These group maxima
form the set of candidates for the following stage. Within each group, all possible pairs of
items are compared, with one processor being responsible for each such pair. As a result, a

group with X items requires that 2 ) processors be assigned to it. The group sizes are

chosen to be as large as possible given the limited number of processors that are available.
Valiant's algorithm requires that in unit time a large number of processors can read from

or write to a single memory location. This paper examines the performance of Valiant's
algorithm when this assumption is changed. In particular, it will be assumed that multiple
requests to a single memory location are handled sequentially. This analysis arises as a result
of investigations by L. Snyder [2].

Let N(t) be the number of items left at time (stage) t, and let R(t) be the number of
groups that the N(t) items are divided into, and let S(t) be the size of the largest of these
groups. For instance, assuming P processors and N = P numbers to begin with, N(O) =
P, R(O) = rP/31, and S(O) = 3. Because each group contibutes one candidate to the next
stage, R(t) = N(t+l) for all values of t. Also, S(t) = [N(t)/R(t)l for all values of t.

In the original analysis of Valiant's algorithm, each stage required constant time. With
the current assumptions about sequential access to memory locations, stage t requires O(S(t))
time to complete. Thus, the time for the entire algorithm depends on the sum of the O(loglog
P) values of S(t). It will be shown that if P processors are available, and N = P numbers are
examined for the maximum, then the algorithm operates in O(PI/ 2 ) time. In fact, the sum
of the S(t)'s is never more than (2P)1/2 + o(P1 /2) and it is greater than (2P)'/ 2 infinitely
often.

To see that the sum of the S(t)'s for all O(loglog P) values of t is never more than 2P 1 / 2

+ o(P'/ 2 ), the following theorem is needed:
Theorem: For all values of t, S(t) < (2P/R(t)) 1/2 + 2.
Proof: Because S(t) is the size of the largest group at time t, the smallest group at time

t has at least S(t) - 1 itemsand thus each group needs at least ( S(t) - ) processors.•\ 2

Because there are R(t) groups, ( )- ) < P/R(t). From this, it follows that (S(t) -

1)(S(t) - 2) < 2P/R(t) and that S(t) < (2P/R(t))1 /2 + 2.
Note that as a corollary to the theorem, S(t) < (2P)' / 2 + 2 for all values of t because

R(t)_: 1. Now consider the values of S(t) for all O(loglog P) values of t. Either all of the



values of S(t) are < p 113, in which case the sum of the values is of O(P1 / 3 loglog P), or there
is some largest value of t s.t. S(t) > p1/ 3 . Let this value of t be denoted u. Thus, S(u) >
p1/3 and S(t) < p1 /3 for t > u. The sum of the S(t)'s for all values of t > u is of O(P /3

loglog P). From the corollary, S(u) !5 (2P)'/ 2 + 2. Next, because S(u) > p1/ 3 , R(u-1) = N(u)
> p1 /3, and from the theorem, S(u-1) < (2P/R(u-1))1/ 2 + 2 < (2P 2 /3)1 / 2 + 2 = O(P'/ 3 ).
Finally, because S(t-1) _ S(t) for t < u (this is easy to show), the sum of the S(t)'s for 0 <
t < u is of O(P l /3 loglog P). As a result, the sum of the S(t)'s for all values of t is < (2P)' /2

+ o(Pl/2 ).
To see that the sum of the S(t)'s is greater than (2P)1 /2 infinitely often, consider the

special case when at every stage, all of the groups have the same size. In this case, S(0) -
3, S(1) = 7, S(2) = 43, S(3) = 1807, etc.. In general, S(t) = 1 + 2 1-' S(x). Consider the
values of P given by the sequence P0 = 1 and Pj+, = P1 (2Pj + 1). For example, P 0 = 1,

P, = 3, P 2 = 21, P 3 = 903 and P 4 = 1,631,721. It can be shown that for any of these P1 's,
the final stage will have N(t) items where N(t)(N(t) - 1)/2 = Pj, so for this value of t, R(t)
= 1 and all of the processors are used to find the maximum of the N(t) remaining items.
However, the N(t) that satisfies the above equality is such that N(t) > (2P) 1 / 2.
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